THE 2-LENGTH OF THE HUGHES SUBGROUP

BY

VOLKER TURAU

Institut für Informatik III, Universität Karlsruhe, 7200 Karlsruhe, FRG

ABSTRACT

For a finite group G and some prime power p^n , the H_{p^n} -subgroup $H_{p^n}(G)$ is defined by $H_{p^n}(G) = \langle x \in G \mid x^{p^n} \neq 1 \rangle$. Meixner proved that if G is a finite solvable group and $G \neq H_{2^n}(G)$ for some $n \geq 1$, then the Fitting length of $H_{2^n}(G)$ is bounded by 4n. In the following note it is shown that the 2-length of $H_{2^n}(G)$ is at most n. This result cannot be derived from Meixner's paper, since his result implies only that the 2-length is bounded by 2n.

Let G be a finite solvable group and p a prime. Define the Hughes subgroup $H_{p^*}(G)$ of G by

$$H_{n^n}(G) = \langle x \in G : x^{p^n} \neq 1 \rangle.$$

In [5] Hartley and Rae proved that the Fitting length of $H_{p^n}(G)$ is bounded by some quadratic function of n if $H_{p^n}(G) \neq G$. Later this bound was improved by Kurzweil and Meixner ([8], [9]). For p odd Espuelas proved that the Fitting length of $H_{p^n}(G)$ is bounded by n and there are examples that prove that this is the best posible result ([2]). The purpose of this note is to prove that the 2-length of $H_{p^n}(G)$ does not exceed n. This result cannot be derived from Meixner's paper, since his result implies only that the 2-length is bounded by 2n. We will prove the following Theorem.

THEOREM. Let G be a finite solvable group having a normal subgroup $H \neq G$ such that every element of $G \setminus H$ is a 2-element of order at most 2^n . Then the 2-length $l_2(H)$ of H is at most n.

In [1] Bryukhanova proved that the 2-length of a finite solvable group with Sylow-2-subgroups of exponent 2^n does not exceed n. Although the exponent of a Sylow-2-subgroup of H is generally not bounded (for example let G be a

Dihedral group of order 2^{m+1} , then $H_{2^n}(G)$ is cyclic of order 2^m if m > n) we will see that the proof of the Theorem is similar to that in [1]. The notation of this note is standard and can be found in [6], [7].

PROOF OF THE THEOREM. Assume that the Theorem is false and let G be a minimal counterexample. Then we have the following:

- (a) If U is a proper subgroup of G not contained in H then $l_2(U \cap H) \le n$ and hence $l_2(U) \le n + 1$.
- (b) If U is a nontrivial normal subgroup of G contained in H then $l_2(H/U) \le n$.
- (c) We have $n \ge 2$, since for n = 1 the group H is nilpotent.
- (d) Since $O_2(G) \le H$ we have $O_2(G) = 1$. Let $V = O_2(G)$ and G = G/V. Then $V \le H$ and V is elementary abelian. Furthermore V is a faithful G-module over GF(2).
- (e) If $x \in G \setminus H$ and $y \in H$ then $(xy)^{2^n} = 1$. Thus if $x \in G \setminus H$ then the degree of the minimal polynomial of \bar{x} on V is less than 2^n .

We need the following Lemma which is contained in [4].

LEMMA 1 (Hartley [4], Lemma 8). Let G be a finite p-soluble group with upper p-series

$$1 = G_0 \leq O_p(G) = G_1 \leq O_{p'p}(G) = G_2 \leq \cdots$$

Let U be a subgroup of G having a series

$$1 = U_0 \le U_1 \le \dots \le U_r = U \qquad (r \ge 1)$$

such that U_i/U_{i-1} is a p'-group if i is odd and a p-group if i is even. Let $S_r \in \operatorname{Hall}_{\pi(U_i/U_{i-1})}(U)$ and for $r > i \ge 1$ let $S_i \in \operatorname{Hall}_{\pi(U_i/U_{i-1})}([S_{i+1}, U_i]U_{i-1})$. If $U \le U_{r-1}G_{r-1}$, then $S_1 = 1$.

Let $1 = N_0 < N_1 < \cdots < N_{2n+1} = H$ be the upper 2-series of H and $G_k = G/N_{k-1}$, $H_k = H/N_{k-1}$ for $k = 1, \dots, 2n + 1$.

LEMMA 2. For k = 1, ..., 2n + 1 the groups H_k contain a nontrivial p_k -subgroup P_k (p_k a prime) which is normal in G_k such that:

- (a) $p_{k+1} \neq p_k$, $p_k = 2$ for odd k and P_k is a special group.
- (b) If R_{k+1} is any p_{k+1} -subgroup of N_{k+1} which covers P_{k+1} then
 - (i) $P_k = [P_k, R_{k+1}].$
 - (ii) R_{k+1} centralizes each proper subgroup of P_k that is normal in G_k .
 - (iii) $N_k/N_{k-1} = \mathbf{C}_{N_k/N_{k-1}}(R_{k+1})P_k$.

PROOF. We will define the groups P_k inductively. Let $P_{2n+1} = H_{2n+1}$ and assume that we have already defined P_{2n+1}, \ldots, P_l . Let R_l be a p_l -subgroup of N_l such that $R_lN_{l-1}/N_{l-1} = P_l$. Since

$$C_H(N_{l-1}/N_{l-2}) \leq N_{l-1}$$

we have $[R_1, N_{l-1}] \not \leq N_{l-2}$. Since the orders of R_l and N_{l-1}/N_{l-2} are coprime, there exists a Sylow-p-subgroup P of N_{l-1}/N_{l-2} which is normalized but not centralized by R_l . Let X denote the preimage of $N_{G_{l-1}}(P)$ in G. Then $G = N_{l-1}X$ by the Frattini argument.

Let $1 = X_0 < X_1 < X_2 < \cdots$ be the upper 2-series of $X \cap H$. Since $N_1 \le X$ we have $O_2(X \cap H) = 1$. Note that

$$R_i \leq N_i \leq X_i N_{i-1}$$
 for $i = 1, \dots, 2n+1$.

We will prove by induction that

(*)
$$R_{i+1} \not \leq X_i N_{l-1}$$
 for $i = l, ..., 2n + 1$.

Assume that $R_l \le X_{l-1} N_{l-1}$. Then by comparison of the orders of the groups R_l , X_{l-1}/X_{l-2} and N_{l-1}/N_{l-2} we have

$$R_l \leq X_{l-2}$$
.

Hence $[P, R_l] = 1$ by Lemma 1. Therefore $R_l \not \leq X_{l-1} N_{l-1}$. Now (*) is proved by induction. Thus R_{2n+1} is not contained in $X_{2n} N_{l-1}$ and hence $l_2(X) = n+1$. Since $N_{l-1} \leq H \neq G$ we have $X \not \leq H$. Therefore by the choice of the counterexample G = X and $P \subseteq G_{l-1}$. Let P_{l-1} be a minimal normal subgroup of G_{l-1} contained in P such that $[P_{l-1}, R_l] \neq 1$.

Let $\hat{R}_l = R_l N_{l-2} / N_{l-2}$. Then \hat{R}_l is a Sylow- p_l -subgroup of the normal subgroup $R_l N_{l-1} / N_{l-2}$ of G_{l-1} . Hence by the Frattini argument:

$$G_{l-1} = \mathbf{N}_{G_{l-1}}(\hat{R}_l)N_{l-1}/N_{l-2}.$$

With the same argument as above we prove that the 2-length of the preimage of $P_{l-1}N_{G_{l-1}}(\hat{R}_l)$ in G is n+1. Hence by the choice of the counterexample

$$G_{l-1} = P_{l-1} \mathbf{N}_{G_{l-1}}(\hat{R}_l).$$

Now we are in the position to prove that P_{l-1} has all the desired properties for the particular choice of R_l . Since $[P_{l-1}, R_l] \leq P_{l-1} \leq G_{l-1}$ we have by minimality of P_l

$$P_{l-1} = [P_{l-1}, R_l]$$

and by [6], III.13.6, we know that P_{l-1} is special. Since $N_{l-1}/N_{l-2} = P_{l-1}N_{N_{l-1}/N_{l-2}}(\hat{R_l})$ and

$$[\mathbf{N}_{N_{l-1}/N_{l-2}}(\hat{R}_l), \hat{R}_l] \leq N_l/N_{l-2} \cap \hat{R}_l = 1,$$

we have

$$\mathbf{N}_{N_{l-1}/N_{l-2}}(\hat{R}_l) = \mathbf{C}_{N_{l-1}/N_{l-2}}(\hat{R}_l).$$

Now let S be any p_l -subgroup of G such that $SN_{l-1}/N_{l-1} = P_l$. Since orders of R_l and N_{l-1}/N_{l-2} are coprime, SN_{l-2} and R_lN_{l-2} are conjugate by an element g. Therefore

$$[P_{l-1}, S] = [P_{l-1}, R_l]^g = P_{l-1}^g = P_{l-1}$$

Thus the Lemma is proved.

Let us denote P_2 by Q. Then Q is a special q-group of exponent q. Let S be a Sylow-2-subgroup of $O_{2'2}(H/V)$ and $T \leq S$ such that $TO_2(\bar{H})/O_2(\bar{H}) = P_3$. Since $O_{2'22}(\bar{H}) = O_2(\bar{H})N(S)$, there exists a p_4 -subgroup P of N(S) such that

$$P_4 = PO_{2'2}(\bar{H})/O_{2'2}(\bar{H}).$$

LEMMA 3. (a) Q is nonabelian and there exists a natural number m such that $q = 2^m - 1$.

- (b) \bar{G} acts irreducibly on V and $C_V(Q) = 1$.
- (c) $V \ 1\bar{G}$ is a counterexample.

PROOF. (a) If $x \in \bar{G} \setminus \bar{H}$ then $C_G(x)$ is a 2-group and hence $C_G(Q) = C_R(Q)$. Let $X = Q + 1\bar{G}/C_G(Q)$. Then by Lemma 2, $l_2(X) = n$. By the choice of the counterexample, there exists an element x in $\bar{G} \setminus \bar{H}$ of order 2^n such that

$$[x^{2^{n-1}}, Q] \neq 1.$$

Since the degree of the minimal polynomial of x on V is less than 2^n we can apply the Theorem of Hall and Higman ([7], IX, 9.2).

- (b) Let N be a normal subgroup of G contained in V such that $[V, Q] \not \leq N$. By Lemma 2 we have $l_2(H/N) = n + 1$. Hence by the choice of the counterexample N = 1. Therefore we have $C_V(Q) = 1$. Let $V_0 \neq V$ be a G-submodule of V. Since $C_V(Q) = 1$ we have $C_Q(V/V_0) \neq Q$. This implies $V_0 = 1$.
- (c) Since $VR_2 \leq G$, we have $G = VN_G(R_2)$. Because of $[N_V(R_2), R_2] = 1$, we have

$$N_{\nu}(R_2) = C_{\nu}(R_2) \le C_{\nu}(Q) = 1.$$

Thus G splits over V.

Let $B = \langle x^{2^{n-1}} | x \in \mathbb{N}_G(S) \setminus H \rangle$. If $x \in \mathbb{N}_G(S) \setminus H$ then $\langle T, x \rangle$ is a 2-group. Now $TO_2(\tilde{G}) \subseteq \tilde{G}$, thus $T \subseteq \langle T, x \rangle$ and therefore $x \in N_G(T)$. This yields $B \subseteq N_G(T)$.

LEMMA 4. (a) $T \leq B \leq S$ and $O_2(\tilde{G})B \leq \tilde{G}$. (b) $l_2(H/O_2(\tilde{G})B) = n - 1$.

PROOF. By the Frattini argument we have $\tilde{G} = N_G(S)O_2(\tilde{G})$. By [3], Theorem B, we have

$$B \leq O_{2/2}(\bar{G}) \cap \mathbf{N}_{\bar{G}}(S)$$

and hence $B \leq S$ since $S \in \operatorname{Syl}_2(O_{22}(\tilde{G}))$. Because B is a normal subgroup of $\mathbf{N}_G(S)$ we have $O_2(\tilde{G})B \leq \bar{G}$. Assume that $T \not\leq B$ and let $\hat{H} = \bar{H}/O_2(\bar{G})B$. By Lemma 2 we have

$$TO_2(\bar{G})/O_2(\bar{G}) \cap BO_2(\bar{G})/O_2(\bar{G}) \leq \Phi(TO_2(\bar{G})/O_2(\bar{G}))$$

and therefore using Lemma 2 again

$$l_2(\hat{H})=n.$$

Obviously the order of every element of $\bar{G}/O_2(\bar{G})B \setminus \hat{H}$ divides 2^{n-1} . This contradicts the choice of the counterexample. Hence $T \leq B$ and $l_2(\hat{H}) = n - 1$.

The following Lemma is now proved on the same lines as Lemma 23 in [1].

LEMMA 5. Let $g \in \mathbb{N}_G(T) \setminus \tilde{H}$ and $x \in T$. If $u = g^{2^{n-1}}(gx)^{2^{n-1}}$ then one of the following holds.

- (a) [u, Q] = 1.
- (b) T is nonabelian and [[T, u], Q] = 1.

Now we are in the position to prove the Theorem. Let

$$\hat{G} = \bar{G}/C_G(Q), \quad \hat{T} = TC_G(Q)/C_G(Q), \quad F = \mathbb{N}_{\hat{G}}(\hat{T})/\mathbb{C}_{\hat{H}}(\hat{T}/\Phi(\hat{T}))$$

and

$$U = \hat{T}/\Phi(\hat{T}) \ 1F.$$

Furthermore let

$$\hat{H} = \bar{H}/C_G(Q), \quad \tilde{F} = \mathbf{N}_{\hat{H}}(\hat{T})/\mathbf{C}_{\hat{H}}(\hat{T}/\Phi(\hat{T}) \quad \text{and} \quad U_1 = \hat{T}/\Phi(\hat{T}) \quad \Im \tilde{F}.$$

We will prove that the order of every element of $U \setminus U_1$ divides 2^{n-1} and that $l_2(U_1) = n$. This contradicts the choice of the counterexample and completes the proof of the Theorem.

(a) $l_2(U_1) = n$. By the Frattini argument we have

$$\hat{H} = O_2(\bar{G})C_G(Q)/C_G(Q)\mathbf{N}_{\hat{H}}(\hat{T})$$

thus

$$\hat{H} = O_{2'}(\hat{H})N_{\hat{H}}(\hat{T})$$

and hence

$$l_2(N_{\hat{H}}(\hat{T})) = l_2(\hat{H}) = n.$$

Let \hat{R}_i denote the image of R_i in \tilde{F} . Then we can assume that the \hat{R}_i satisfy the same conditions as the R_i . Since $\hat{T}/\Phi(\hat{T}) \leq O_2(U_1)$, we have $O_2(U_1) = 1$.

Let $1 = F_0 \le F_1 = O_2(\tilde{F}) \le F_2 \cdots$ be the upper 2-series of \tilde{F} . Analogously to Lemma 2 we will prove that

(**)
$$\hat{R}_i \leq F_{i-2}$$
 and $\hat{R}_i \leq F_{i-3}$ for $i \geq 4$.

Assume that $\hat{R}_4 \leq F_1$, then $[R_4, T] \leq C_G(Q)$ since the order of \hat{R}_4 is odd. Thus

$$TO_2(\bar{G}) = [R_4, T]O_2(\bar{G}) \leq \mathbb{C}_G(Q)O_2(\bar{G}).$$

This implies $T \leq C_G(Q)$ since Q is a normal subgroup of G. This contradiction proves $\hat{R}_4 \not\leq F_1$.

Now (**) is proved by induction using Lemma 2. Thus $\hat{R}_{2n-1} \not \leq F_{2(n-1)}$ and therefore $l_2(U_1) = n$.

(b) $[B, T] \leq \Phi(T)$. Since $B \leq N_G(T)$ and $B \leq S$ we have

Thus $[T, B]O_2(\bar{G})/O_2(\bar{G})$ is a normal subgroup of H_3 properly contained in P_3 . Hence by Lemma 2

$$[B, T, P] \leq O_{2'}(\bar{G}).$$

Therefore [B, T, P] = 1 since $P \le N(S)$. Now $TO_2(\tilde{G}) = [T, P]O_2(\tilde{G})$ implies [T, P] = T. This yields

$$1 = [[T, B]\Phi(T)/\Phi(T), P] = [T, B]\Phi(T)/\Phi(T).$$

- (c) \hat{T} is special. Since T is special we can assume that \hat{T} is nonabelian. Let X be the preimage of $Z(T/C_T(Q))$. Then X < T and $XO_2(\tilde{G}) \leq \tilde{G}$ since $G = O_2(G)N_G(T)$. Thus $[X, P] \leq O_2(\tilde{G})$ by Lemma 2 and hence [X, P] = 1. Since T = [T, P], we have $X \leq \Phi(T) = Z(T)$. Thus $Z(\hat{T}) = \Phi(\hat{T})$ and hence \hat{T} is special.
 - (d) If $x \in U \setminus U_1$, then the order of x divides 2^{n-1} . Let $W \in Syl_2(N_G(T))$ such

that $S \subseteq W$ and let W be the image of W in F. Then $\hat{T}/\Phi(\hat{T}) \mid W \in \operatorname{Syl}_2(U)$. WLOG we can assume that x is contained in that group. If g is an element in $N_G(T) \setminus \hat{H}$, then g is conjugate to an element in $N_G(S) \setminus \hat{H}$. Therefore the order of the image of g in F is less than or equal to 2^{n-1} . Now let $x \in T$ and $g \in N_G(T) \setminus \hat{H}$. We have

$$(gx)^{2^{n-1}}=g^{2^{n-1}}u,$$

where u is defined as in Lemma 5. To prove (d) it remains to prove that the image of u in T is contained in $\Phi(T)$. But this is a consequence of Lemma 5 and (c):

If [u, Q] = 1, then the image of u in \hat{T} is 1 and if [T, u, Q] = 1, then the image of u is contained in $Z(\hat{T}) = \Phi(\hat{T})$.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the support of the SERC of England.

REFERENCES

- 1. E. G. Bryukhanova, The 2-length and 2-period of a finite solvable group, Algebra and Logic 18, No. 1 (1979), 5-20.
 - 2. A. Espuelas, The Fitting length of the Hughes subgroup, J. Algebra 105 (1987), 365-371.
 - 3. F. Gross, The 2-length of finite solvable groups, Pac. J. Math. 15 (1965), 1221-1237.
- 4. B. Hartley, Some theorems of Hall-Higman type for small primes, Proc. London Math. Soc. 41 (1980), 340-362.
- 5. B. Hartley and A. Rae, Finite p-groups acting on p-soluble groups, Bull. London Math. Soc. 5 (1973), 197-198.
 - 6. B. Huppert, Endliche Gruppen I, Springer-Verlag, New York-Heidelberg-London, 1967.
- 7. B. Huppert and N. Blackburn, Finite Groups II, Springer-Verlag, New York-Heidelberg-London, 1982.
- 8. H. Kurzweil, Eine Verallgemeinerung von Fixpunktfreien Automorphismen endlicher Gruppen, Arch. Math. 22 (1971), 136-145.
 - 9. T. Meixner, The Fitting length of solvable H_n (G)-groups, Isr. J. Math. 51 (1985), 68-78.